|
A thin-film solar cell is a second generation solar cell that is made by depositing one or more thin layers, or thin film (TF) of photovoltaic material on a substrate, such as glass, plastic or metal. Thin-film solar cells are commercially used in several technologies, including cadmium telluride (CdTe), copper indium gallium diselenide (CIGS), and amorphous thin-film silicon (a-Si, TF-Si). Film thickness varies from a few nanometers (nm) to tens of micrometers (µm), much thinner than thin-film's rival technology, the conventional, first-generation crystalline silicon solar cell (c-Si), that uses wafers of up to 200 µm. This allows thin film cells to be flexible, lower in weight, and have less drag or friction. It is used in building integrated photovoltaics and as semi-transparent, photovoltaic glazing material that can be laminated onto windows. Other commercial applications use rigid thin film solar panels (sandwiched between two panes of glass) in some of the world's largest photovoltaic power stations. Thin-film has always been cheaper but less efficient than conventional c-Si technology. However, they significantly improved over the years, and lab cell efficiency for CdTe and CIGS are now beyond 21 percent, outperforming multicrystalline silicon, the dominant material currently used in most solar PV systems.〔 Accelerated life testing of thin film modules under laboratory conditions measured a somewhat faster degradation compared to conventional PV, while a lifetime of 20 years or more is generally expected.〔(【引用サイトリンク】title=The Real Lifespan of Solar Panels )〕 Despite these enhancements, market-share of thin-film never reached more than 20 percent in the last two decades and has been declining in recent years to about 9 percent of worldwide photovoltaic installations in 2013.〔 Other thin-film technologies, that are still in an early stage of ongoing research or with limited commercial availability, are often classified as emerging or third generation photovoltaic cells and include, organic, dye-sensitized, and polymer solar cells, as well as quantum dot, copper zinc tin sulfide, nanocrystal, micromorph and perovskite solar cells. == History == Thin film cells are well-known since the late 1970s, when solar calculators powered by a small strip of amorphous silicon appeared on the market. It is now available in very large modules used in sophisticated building-integrated installations and vehicle charging systems. Although thin-film technology was expected to make significant advances in the market and to surpass the dominating conventional crystalline silicon (c-Si) technology in the long-term, market-share has been declining for several years now. While in 2010, when there was a shortage of conventional PV modules, thin-film accounted for 15 percent of the overall market, it declined to 8 percent in 2014, and is expected to stabilize at 7 percent from 2015 onward, with amorphous silicon expected to lose half of its market-share by the end of the decade.〔(【引用サイトリンク】title=IHS: Global solar PV capacity to reach nearly 500 GW in 2019 )〕 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Thin-film solar cell」の詳細全文を読む スポンサード リンク
|